If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2t^2+16=0
a = -2; b = 0; c = +16;
Δ = b2-4ac
Δ = 02-4·(-2)·16
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*-2}=\frac{0-8\sqrt{2}}{-4} =-\frac{8\sqrt{2}}{-4} =-\frac{2\sqrt{2}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*-2}=\frac{0+8\sqrt{2}}{-4} =\frac{8\sqrt{2}}{-4} =\frac{2\sqrt{2}}{-1} $
| x/3=x-28 | | t÷5-3=15 | | 7x-4=528 | | x-4.2=6.45 | | v+5.6=8.49 | | y-6.71=1.8 | | 0=((1/7)x)+6 | | 4(2x-3)=x-2 | | 5x+7+3x=8x-9x+9 | | -58-5n=4+3n | | -7-5v=6v+33 | | v-8.6=7.83 | | 8z+10=3z-23 | | 4w+5=5w+23 | | 7(x-9)=5(x-2) | | 5y+6=2y-19 | | 2x=6=x-4 | | 4x+12=-44+4x | | 5s/23=92 | | 4x-10=3(5x+2)-13x+7 | | 3+2a=0 | | x+1.48=4.75 | | 10s-30=-75 | | 3z+6=4z-10 | | 4(x-3)=8+2 | | d,4+2=8 | | 2w+5=4w+29 | | 3(x+1)+2(x-3)=17 | | 3y+9=2y-11 | | -5x-8=107 | | x=180-154 | | 3m-30=19 |